This paper proposes a novel fault diagnosis method based on variational mode decomposition (VMD) and generalized composite multi-scale symbol dynamic entropy (GCMSDE) to identify the different health conditions of planetary gearboxes. First, VMD is adopted to remove the noises and highlight the fault symptoms. Second, GCMSDE is utilized to extract the fault features from the denoised vibration signals. Third, the Laplacian score (LS) approach is employed to refine the fault features. Finally, the new features are fed into Softmax regression to identify the health conditions of planetary gearboxes. The proposed method is numerically and experimentally demonstrated to be able to differentiate seven localized fault types on the sun gear, planet gear and ring gear of planetary gearboxes.