Orthogonal frequency division multiplexing (OFDM) has been widely used for its robustness against multipath fading and low-complexity implementation. However, OFDM system, especially with large number of subcarriers and high modulation order, is severely affected by the phase noise of oscillators and carrier frequency offset (CFO). On the other hand, self-cancellation schemes have received a lot of attention due to their simple implementation and high efficiency to suppress inter-carrier interference (ICI) in OFDM systems. Among those ICI self-cancellation methods, symmetric conjugate symbol repetition (SCSR) has been proven to have the best bit error ratio (BER) performance for phase noise suppression. In this paper, the performance of OFDM systems with SCSR ICI self-cancellation in the presence of both phase noise (PHN) and CFO are investigated, and analytical expressions are derived to calculate error probability evaluated by symbol error ratio (SER) over additive white Gaussian noise (AWGN) and Rayleigh flat fading channels. An approach of second order approximation of PHN/CFO has been performed to estimate the residual ICI, which could provide more accurate results. Simulation results show perfect agreement with those obtained by theoretical analysis, which could be used to estimate OFDM system error probability, facilitating the design of the overall system.