In this paper, the problem of stability of switched homogeneous systems is addressed. First of all, if there is a quadratic Lyapunov function such that nonlinear homogeneous systems are asymptotically stable, a matrix Lyapunov-like equation is obtained for a stable nonlinear homogeneous system using semi-tensor product of matrices, and Lyapunov equation of linear system is just its particular case. Following the previous results, a sufficient condition is obtained for stability of switched nonlinear homogeneous systems, and a switching law is designed by partition of state space. In particular, a constructive approach is provided to avoid chattering phenomena which is caused by the switching rule. Then for planar switched homogeneous systems, an LMI approach to stability of planar switched homogeneous systems is presented. Similar to the condition for linear systems, the LMI-type condition is easily verifiable. An example is given to illustrate that candidate common Lyapunov function is a key point for design of switching law.
Read full abstract