The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.