It is known that swift heavy ion (SHI) irradiation induces the shape elongation of metal nanoparticles (NPs) embedded in transparent insulators, which results in anisotropic optical absorption. Here, we report another type of the optical anisotropy induced in CaF2 crystals without including intentionally embedded metal NPs. The CaF2 samples were irradiated with 200 MeV Xe14+ ions with an incident angle of 45° from the surface normal. With the increasing fluence, an absorption band at ~550 nm, which is ascribed to Ca aggregates, increases both the intensity and the anisotropy. XTEM observation clarified the formation of the continuous line structures and the discontinuous NP chains parallel to the SHI beam. Numerical simulations of the optical absorption spectra suggested the NP chains but not the continuous line structures as the origin of the anisotropy. The optical anisotropy in CaF2 irradiated with SHIs is different from the shape elongation of NPs.
Read full abstract