In emergency scenarios where the on-site information is completely lacking or the original environmental state has been completely changed, autonomous and mobile swarm robotics are used to quickly build a rescue support system to ensure the safety of follow-up rescuers and improve rescue efficiency. To address the data security problem caused by the complex and changeable topology of the heterogeneous swarm robotics network in the process of building the rescue support system, this paper introduced a decentralized data security communication scheme for heterogeneous swarm robotics. First, we built a decentralized network topology model by using base robot, communication robotics, and business robotics, and it can ensure the stability of the system. Moreover, based on the decentralized network topology model, we designed a storage model using the master–slave blockchain method. The master chain is composed of base robot and communication robotics, which mainly store the digests of robot data in multiple slave chains to reach the global data consensus of the system. The slave chains are composed of business robotics and communication robotics, which mainly store all data on the slave chains to reach the local data consensus of the system. The whole data storage system adopts the Delegated Proof of Stake consensus mechanism to elect proxy nodes to participate in the data consensus tasks in the system and to ensure the data consistency of each robot node in the decentralized network. Additionally, a prototype of the heterogeneous swarm robotics system based on the master–slave chains is constructed to verify the effectiveness of the proposed model. The experimental results show that the scheme effectively solves the data security problem caused by the unstable communication link of the heterogeneous swarm robotics system.
Read full abstract