Livestock grazing alters the diversity and composition of plants and soil biota in grassland ecosystems. However, whether and how grazing affects plant-soil biota interactions are limited. Here, we performed a field investigation on the Tibetan grasslands to determine the relationships between plant community properties (biomass, diversity and richness) and soil biota (abundance, diversity and composition of bacteria, fungi and nematodes) in the long-term yak grazing and ungrazed plots, and responses of plant-soil biota linkages to grazing in alpine meadows and alpine swampy meadows were compared. The results found that grazing did not cause significant changes in plant community properties but increased the soil water content. Further, grazing weakened plant-soil microbes/nematode relationships in alpine meadows. The bacterial and fungal abundances were correlated with plant belowground biomass and Simpson index in the ungrazed plots of alpine meadows, while the correlation was not significant under grazing. Bacterial composition was correlated with plant richness only in the ungrazed meadows. Plant-soil nematode linkages were more sensitive to grazing than plant-microbes linkages. Grazing decoupled the relationships between the abundances of nematode trophic groups and plant aboveground biomass, richness and Simpson index in alpine meadows, while the decoupling phenomenon is less evident in alpine swampy meadows. The SEM results indicate that grazing altered the plant above- and belowground biomass to affect the soil nematode community, while influenced soil microbes only through alterations of plant belowground biomass. The findings highlight the importance of grazing in influencing the interactions between aboveground plant communities and soil biological communities in Tibetan grasslands.
Read full abstract