Previous articleNext article No AccessThe Effects of Dissolved O₂ and CO₂ on Metabolism and Gas-Exchange Partitioning in Aquatic SalamandersJohn M. Wakeman and Gordon R. UltschJohn M. Wakeman Search for more articles by this author and Gordon R. Ultsch Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 48, Number 4Oct., 1975 Article DOIhttps://doi.org/10.1086/physzool.48.4.30155660 Views: 7Total views on this site Citations: 20Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Do Thi Thanh Huong, Chau Huynh Thuy Tram, Nguyen Thi Kim Ha, Le Thi Hong Gam, Atsushi Ishimatsu, Nguyen Thanh Phuong Effects of carbon dioxide (CO2) at different temperatures on physiological parameters and growth in striped catfish (Pangasianodon hypophthalmus) juveniles, Aquaculture 534 (Mar 2021): 736279.https://doi.org/10.1016/j.aquaculture.2020.736279Phan Vinh Thinh, Do Thi Thanh Huong, Le Thi Hong Gam, Christian Damsgaard, Nguyen Thanh Phuong, Mark Bayley, Tobias Wang Renal acid excretion contributes to acid–base regulation during hypercapnia in air-exposed swamp eel ( Monopterus albus ), The Journal of Experimental Biology 222, no.99 (Apr 2019): jeb198259.https://doi.org/10.1242/jeb.198259Le Thi Hong Gam, Frank Bo Jensen, Do Thi Thanh Huong, Nguyen Thanh Phuong, Mark Bayley The effects of elevated environmental CO 2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata, Aquatic Toxicology 196 (Mar 2018): 124–131.https://doi.org/10.1016/j.aquatox.2018.01.011Gerhard Heldmaier, Gerhard Neuweiler, Wolfgang Rössler Atmung, (Oct 2012): 149–212.https://doi.org/10.1007/978-3-642-25155-9_4Gordon R. Ultsch Metabolism, gas exchange, and acid-base balance of giant salamanders, Biological Reviews 87, no.33 (Dec 2011): 583–601.https://doi.org/10.1111/j.1469-185X.2011.00211.xJohn N. Maina Functional Designs of the Gas Exchangers, (May 2011): 141–221.https://doi.org/10.1007/978-3-642-20395-4_5Gordon R. Ultsch, Elizabeth L. Brainerd, Donald C. Jackson Lung collapse among aquatic reptiles and amphibians during long-term diving, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 139, no.11 (Sep 2004): 111–115.https://doi.org/10.1016/j.cbpb.2004.07.002Gordon R. Ultsch Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates, Palaeogeography, Palaeoclimatology, Palaeoecology 123, no.1-41-4 (Jul 1996): 1–27.https://doi.org/10.1016/0031-0182(96)00121-6Suping Jiang, Dennis L Claussen A bioenergetic budget for overwintering newts (Notophthalmus viridescens) from southern ohio: Their fat reserves and aerobic metabolic rates in water, Comparative Biochemistry and Physiology Part A: Physiology 101, no.44 (Apr 1992): 743–750.https://doi.org/10.1016/0300-9629(92)90353-RGordon R. Ultsch, Jeffrey T. Duke Gas exchange and habitat selection in the aquatic salamanders Necturus maculosus and Cryptobranchus alleganiensis, Oecologia 83, no.22 (Jun 1990): 250–258.https://doi.org/10.1007/BF00317760Gordon R. Ultsch THE POTENTIAL ROLE OF HYPERCARBIA IN THE TRANSITION FROM WATER-BREATHING TO AIR-BREATHING IN VERTEBRATES, Evolution 41, no.22 (May 2017): 442–445.https://doi.org/10.1111/j.1558-5646.1987.tb05811.xBernard M. Hitzig, Douglas C. Johnson, Eric McFarland, Jason A. Koutcher, Homayoun Kazemi, C.Tyler Burt Unknown phosphate compounds in tail muscle of intact conscious newts by 31P NMR, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 86, no.33 (Jan 1987): 537–540.https://doi.org/10.1016/0305-0491(87)90444-5MARTIN E. FEDER, WARREN W. BURGGREN CUTANEOUS GAS EXCHANGE IN VERTEBRATES: DESIGN, PATTERNS, CONTROL AND IMPLICATIONS, Biological Reviews 60, no.11 (Feb 1985): 1–45.https://doi.org/10.1111/j.1469-185X.1985.tb00416.xWarren Burggren Transition of respiratory processes during amphibian metamorphosis: from egg to adult, (Jan 1984): 31–53.https://doi.org/10.1007/978-94-009-6536-2_3Gordon R. Ultsch, Donald C. Jackson, Richard Moalli Metabolic oxygen conformity among lower vertebrates: The toadfish revisited, Journal of Comparative Physiology ? B 142, no.44 (Jan 1981): 439–443.https://doi.org/10.1007/BF00688973Ruthanne Batcheller Pitkin Heart rates of adult red-spotted newts, Notophthalmus viridescens in air and submerged in normoxic and hypoxic water at different temperatures, Comparative Biochemistry and Physiology Part A: Physiology 65, no.44 (Jan 1980): 493–496.https://doi.org/10.1016/0300-9629(80)90065-1Martin E. Feder Oxygen consumption and activity in salamanders: Effect of body size and lunglessness, Journal of Experimental Zoology 202, no.33 (Dec 1977): 403–413.https://doi.org/10.1002/jez.1402020310Ruthanne Batcheller Pitkin Effects of temperature on respiration of Notophthalmus viridescens, the red-spotted newt, Comparative Biochemistry and Physiology Part A: Physiology 57, no.44 (Jan 1977): 413–416.https://doi.org/10.1016/0300-9629(77)90138-4Gordon R. Ultsch Respiratory surface area as a factor controlling the standard rate of O2 consumption of aquatic salamanders, Respiration Physiology 26, no.33 (May 1976): 357–369.https://doi.org/10.1016/0034-5687(76)90006-2Alan G. Heath Respiratory responses to hypoxia by Ambystoma tigrinum larvae, paedomorphs, and metamorphosed adults, Comparative Biochemistry and Physiology Part A: Physiology 55, no.11 (Jan 1976): 45–49.https://doi.org/10.1016/0300-9629(76)90121-3
Read full abstract