Abstract Objectives Palmatine Hydrochloride (PaH), an isoquinoline alkaloid from Phellodendron amurense and Coptis chinensis, has analgesic, anti-inflammatory, and anticancer properties. This study aimed to assess PaH’s effectiveness against SW480 colorectal cancer (CRC) cells and explore its molecular mechanisms. Methods PaH’s effects on SW480 CRC cells were evaluated using MTT assays for proliferation, scratch assays for migration, and flow cytometry for apoptosis. Differentially expressed genes (DEGs) were identified through high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assessed DEG roles. Prognostic significance related to programmed cell death (PCD) was analyzed using R-Package with TCGA data. RT-qPCR validated key genes identified. Results PaH significantly inhibited SW480 cell growth, invasion, and apoptosis. The MTT assay showed inhibition rates increased from 5.49 % at 25 μg/mL to 52.48 % at 400 μg/mL. Scratch assays indicated reduced cell invasion over 24, 48, and 72 h. Apoptosis rose from 12.36 % in controls to 45.54 % at 400 μg/mL. Sequencing identified 3,385 significant DEGs, primarily in cancer pathways (p=0.004). Among 35 PCD-related DEGs, Lasso Cox regression highlighted 12 key genes, including TERT, TGFBR1, WNT4, and TP53. RT-qPCR confirmed TERT and TGFBR1 downregulation (0.614-fold, p=0.008; 0.41-fold, p<0.001) and TP53 and WNT4 upregulation (5.634-fold, p<0.001; 5.124-fold, p=0.002). Conclusions PaH inhibits CRC cell proliferation, migration, and invasion by modulating key PCD genes, suggesting its potential as a CRC therapeutic agent.
Read full abstract