We consider gravity mediated supersymmetry (SUSY) breaking in 5D spacetime with two 4D branes B1 and B2 separated in the extra dimension. Using an off-shell 5D supergravity (SUGRA) formalism, we argue that the SUSY breaking scales could be nonuniversal even at the fundamental scale in a brane world setting, since SUSY breaking effects could be effectively localized. As an application, we suggest a model in which the two light chiral minimal supersymmetric standard model generations reside on B1, while the third generation is located on B2, and the Higgs multiplets as well as gravity and gauge multiplets reside in the bulk. For SUSY breaking of the order of 10--20 TeV caused by a hidden sector localized at B1, the scalars belonging to the first two generations can become sufficiently heavy to overcome the SUSY flavor problem. SUSY breaking on B2 from a different localized hidden sector gives rise to the third generation soft scalar masses of the order of 1 TeV. Gaugino masses are also of the order of 1 TeV if the size of the extra dimension is $\ensuremath{\sim}{10}^{\ensuremath{-}16}{\mathrm{GeV}}^{\ensuremath{-}1}.$ As in 4D effective supersymmetric theory, an adjustment of TeV scale parameters is needed to realize the 100 GeV electroweak symmetry breaking scale.
Read full abstract