In the current scenario, achieving food security while conserving resources and energy is a significant challenge. Maize is a widely cultivated but nutrient-exhaustive crop. The adoption of nanotechnology-based nano-fertilizers offers a pathway to achieving sustainable yields while reducing fertilizer requirements and conserving energy. A field experiment was conducted during the Kharif season of 2021 to explore nutrient and energy conservation through nano-fertilizers in maize at the University of Agricultural Sciences, GKVK, Bengaluru. The experiment involved nine treatments comprising various combinations of the recommended dose of fertilizers (RDF) with nano-urea and nano Di-Ammonium Phosphate (DAP) under a Randomized Complete Block Design (RCBD). The results indicated that Treatment T5 - 75% of the Recommended Dose of Nitrogen (RDN) + Nano-N—achieved a higher yield (10.20% higher than the conventional practice, T1-RDF + Farmyard Manure (FYM)) and improved nutrient uptake at harvest [299.22, 55.56, and 208.26 kg of nitrogen (N), phosphorus (P), and potassium (K) per hectare, respectively]. This treatment also demonstrated greater physiological efficiency (36.11, 200.66, and 52.70 kg of maize per kg of N, P, and K, respectively), higher energy output (260,851 MJ ha?¹), improved energy use efficiency (16.93), enhanced energy productivity (0.627 kg MJ?¹), and better energy profitability (15.93). Using 75% of RDN + Nano-N increases yield while reducing fertilizer use and conserving energy.