Electroconvulsive therapy (ECT) represents one of the most effective therapies for treatment-resistant depression (TRD). The brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in major depressive disorder and in the effects of different therapeutic approaches, including ECT. Both BDNF peripheral levels and Val66Met polymorphism have been suggested as biomarkers of treatment effectiveness. The objective of this study was to test the potential of serum BDNF levels and Val66Met polymorphism in predicting ECT outcome in TRD patients. Seventy-four TRD patients scheduled to undergo ECT were included in the study. Illness severity was assessed through the Montgomery and Asberg Depression Rating Scale before beginning ECT (T0), the day after the end of ECT (T1), and 1 month after the end of ECT (T2). At T1, patients were classified as responders/nonresponders and remitters/nonremitters, whereas at T2, they were classified as sustained responders/nonresponders and sustained remitters/nonremitters. Serum concentrations of BDNF were measured at T0, and the BDNF Val66Met polymorphism was genotyped. No difference in BDNF concentrations was observed in responders versus nonresponders, in remitters versus nonremitters, in sustained responders versus sustained nonresponders, and in sustained remitters versus sustained nonremitters. No association of Val66Met polymorphism was detected with both the response and the remission status. Baseline serum BDNF levels and the BDNF Val66Met polymorphism showed no clinical utility in predicting ECT outcome in TRD patients.