Fibroblast growth factor1 is a powerful signaling molecule that plays a critical role in injury repair of diverse tissue by stimulating cell growth and angiogenesis. FGF1 has significant role in the cell fate and regulating inflammation with short half-life and poor in vivo stability. The encapsulation of the growth factor in the hydrogel led to peptide protect from the degradation and/or immune recognition and enable controlled drug delivery over a longer period of time. The aim of this study is to develop and evaluate a hydrogel carrier with adjustable release rate while maintaining bioactivity of FGF1. Here we describe an optimal ratio of sodium alginate and polyacrylic acid without additional cross linker containing optimum amount of FGF1 with the potential of sustained release to be used as a therapeutic agent. The carrier was characterized by FTIR, contact angle and swelling ratio. The activity of FGF1 after release from the hydrogel was confirmed by ELISA and Western blot. Further assessment of genes related to inflammation were evaluated by RTPCR. This hydrogel is able to deliver growth factors by restricting the essential proteins within the matrix to prevent rapid proteolysis and explosive release and is therefore widely applicable.
Read full abstract