Abstract
This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have