Isolated ventricular cardiomyocytes exhibit substantial cell-to-cell variability, even when obtained from the same small volume of myocardium. In this study, we investigated the possibility that cardiomyocyte responses to β-adrenergic stimulus are also highly heterogeneous. To achieve the throughput and measurement duration desired for these experiments, we designed and validated a novel microwell system that immobilizes and uniformly orients isolated adult cardiomyocytes. In this configuration, detailed drug responses of dozens of cells can be followed for intervals exceeding 1 h. At the conclusion of an experiment, specific cells can also be harvested via a precision aspirator for single-cell gene expression profiling. Using this system, we followed changes in Ca2+ signaling and contractility of individual cells under sustained application of either dobutamine or omecamtiv mecarbil. Both compounds increased average cardiomyocyte contractility over the course of an hour, but responses of individual cells to dobutamine were significantly more variable. Surprisingly, some dobutamine-treated cardiomyocytes augmented Ca2+ release without increasing contractility. Other cells responded with increased contractility despite unchanged Ca2+ release. Single-cell gene expression analysis revealed significant co-expression of β-adrenergic pathway genes PKA regulatory subunit type I, PKA regulatory subunit type II, and Ca2+/calmodulin-dependent protein kinase II across cardiomyocytes. Other data supported a connection between the effects of dobutamine on relaxation rate and the expression of protein phosphatase 2. These findings suggest that variable drug responses among cells are not merely experimental artifacts. By enabling direct comparison of the functional behavior of an individual cell and the genes it expresses, this new system constitutes a unique tool for interrogating cardiomyocyte drug responses and discovering the genes that modulate them.
Read full abstract