This study investigates the novel approach of synergizing desert vegetation with shelter forests to enhance windbreak efficiency in a transitional zone between the Korla oasis and the Taklimakan Desert, northwest China. Through an extensive field survey and experimental setup, we evaluated the impact of different shelterbelt configurations on wind speed reduction. Three types of shelter forests were examined: multi-row Poplar (Populus alba), single-row Jujube (Ziziphus jujube), and a mixed-species layout combining one row of Jujube and two rows of Poplar trees. Wind speed measurements were recorded at multiple heights across three zones-open field, between desert vegetation and shelterbelt, and leeward of the shelterbelt-over a three-month period (April to June, 2023). The findings reveal a significant reduction in wind speed, particularly on the leeward side, with multi-row and mixed-species configurations proving the most effective. The highest synergistic efficiency, observed in the mixed-species shelter forest, showed a windbreak efficiency improvement of over 20% compared to desert vegetation alone. This study provides new insights into the combined effectiveness of desert vegetation and shelter forests, offering a strategic framework for designing shelterbelts in arid environments. These results underscore the critical role of diverse, structured vegetation arrangements in combating wind erosion and contribute to the development of sustainable ecological management practices for desert regions worldwide.
Read full abstract