Indoles are critical in natural amalgamation for their flexible jobs in drugs, regular items, and material science, exhibiting huge pharmacological and compound reactivity. Due to their versatility and high reactivity, nitroalkenes are essential electrophilic partners in organic synthesis. While indoles and nitroalkenes are used in both Michael addition and Friedel-Crafts alkylation for producing carbon-carbon bonds, the catalyst types and reactions involved are different. Michael addition employs conjugate addition, whereas Friedel-Crafts alkylation employs electrophilic aromatic substitution. Each technique has a different level of selectivity and distinct synthetic applications. This review examines the advancements and persistent challenges in catalysis, focusing on the comparative methodologies of Friedel-Crafts alkylation and Michael addition involving indoles and nitroalkenes. Emphasizing green chemistry principles, it discusses the potential for sustainable and efficient synthetic processes through the use of innovative catalysts, including photocatalysis and biocatalysis. The integration of computational studies and interdisciplinary collaboration is essential for developing economically viable and environmentally responsible chemical synthesis, ultimately contributing to the creation of advanced materials and pharmaceuticals.
Read full abstract