The dissolution of elemental sulfur in acidic gas leads to its precipitation as gas pressure decreases, thereby causing potential damage to the formation due to the deposition of sulfur particles. Previous sulfur deposition prediction models often relied on the solubility of sulfur in acidic gas and the stress state of sulfur particles to determine the occurrence of deposition, thus establishing predictive models. However, in the presence of complex geological conditions, the multiphase flow through porous media and the adsorption of particles on pore throat walls can also influence sulfur particle deposition to some degree. It is well known that sulfur particle deposition during gas reservoir development exhibits instability, with multiple factors influencing the deposited sulfur particles. Particularly noteworthy is the influence of airflow velocity, which can resuspend sulfur particles that are physically adsorbed on pore throat surfaces, thereby reintegrating them into the gas phase. Additionally, the dynamic deposition of larger sulfur particles involves a dynamic process. This study elucidates the dynamic process of sulfur deposition by considering the diverse transport dynamics of sulfur particles. Physical adsorption and desorption behaviors of sulfur particles are determined based on variations in reservoir conditions. The desorption status of sulfur particles with different particle sizes within the formation is established by evaluating the equilibrium between the force exerted on the pore throat wall and the suspension force generated by gas flow. The critical conditions for sulfur deposition in Yuanba gas reservoir were obtained by substituting on-site parameters into calculations. Moreover, a mathematical model is proposed to describe the dynamic deposition and migration of sulfur particles, adopting principles from continuous porous media porous flow theory, fluid flow mass conservation, as well as sulfur particle desorption and migration. The formulated model is solved, and its resulting solution process and outcomes hold significant implications for numerical simulation and predictive assessment of the development impact on gas reservoirs, particularly in later stages.