Abstract

Compared with double-winding bearingless permanent magnet synchronous motor, single-winding bearingless permanent magnet synchronous motor (SBPMSM) has the advantages of low copper loss and low failure rate. However, if the slot-pole combination of SBPMSM is not reasonably selected, the winding coefficient will be reduced, and even many advantages of the single-winding structure will be offset. In this paper, a single-winding design method based on magnetomotive force (MMF) star diagram is proposed, which can ensure high winding coefficient. The design process of the proposed single winding structure is introduced. This method can match the appropriate number of stator slots according to the number of rotor poles, and the winding phase separation design can be realized by reversing the slot number transposition. The mathematical models of the suspension force and torque of the bearingless permanent magnet synchronous motor are derived considering the magnetic field harmonics, and the 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are taken as examples to analyze the magnetic field. The finite element simulation models of 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are built and analyzed. Through the analysis of electromagnetic torque, suspension force and air-gap magnetic field under different magnetic fields, the general rules of main torque fluctuation and suspension force fluctuation are summarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call