Due to heterogeneity of molecular biology and microenvironment, therapeutic efficacy varies among hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) and tyrosine kinase inhibitors (TKIs). We examined combined models using clinicoradiological characteristics, mutational burden of signaling pathways, and radiomics features to predict survival prognosis. Two cohorts comprising 111 patients with HCC were used to build prognostic models. The training and test cohorts included 78 and 33 individuals, respectively. Mutational burden was calculated based on 17 cancer-associated signaling pathways. Radiomic features were extracted and selected from computed tomography images using a pyradiomics system. Models based on clinicoradiological indicators, mutational burden, and radiomics score (rad-score) were built to predict overall survival (OS) and progression-free survival (PFS). Eastern Cooperative Oncology Group performance status, Child-Pugh class, peritumoral enhancement, PI3K_AKT and hypoxia mutational burden, and rad-score were used to create a combined model predicting OS. C-indices were 0.805 (training cohort) and 0.768 (test cohort). The areas under the curve (AUCs) were 0.889, 0.900, and 0.917 for 1-year, 2-year, and 3-year OS, respectively. To predict PFS, alpha-fetoprotein level, tumor enhancement pattern, hypoxia and receptor tyrosine kinase mutational burden, and rad-score were used. C-indices were 0.782 (training cohort) and 0.766 (test cohort). AUCs were 0.885 and 0.925 for 6-month and 12-month PFS, respectively. Calibration and decision curve analyses supported the model's accuracy and clinical potential. The nomogram models are hopeful to predict OS and PFS in patients with intermediate-advanced HCC treated with TACE plus TKIs, offering a promising tool for treatment decisions and monitoring patient progress.
Read full abstract