Consuming energy at the maximal level is a major concern in wireless sensor networks (WSNs). Many researchers focus on reducing and preserving the energy. The duration of active network of WSNs is affected by energy consumption of sensor nodes. For typical applications such as structure monitoring, border surveillance, integrated into the external surface of a pipeline, and clambered along the sustaining structure of a bridge, sensor node energy efficiency is an important issue. The paper proposed an energy-efficient multi-hop routing protocol using hybrid optimization algorithm (E2MR-HOA) for WSNs. The proposed routing protocol consists of two algorithms, i.e., hybrid optimization algorithm. We present modified chemical reaction optimization (MCRO) algorithm to form clusters and select cluster head (CH) among the cluster members. Then the modified bacterial forging search (MBFS) algorithm is used to compute reliable route between source to destination. The proposed E2MR-HOA protocol is evaluated using NS2 simulations. The simulation result shows that the proposed routing protocol provides significant energy efficiency with network lifetime over the existing routing protocols.