Given the complexity of the carcinogenic process and the lack of any mechanistic understanding of how ionizing radiation at low-level exposures affects the multistage, multimechanism processes of carcinogenesis, it is imperative that concepts and paradigms be reexamined when extrapolating from high dose to low dose. Any health effect directly linked to low-dose radiation exposure must have molecular/biochemical and biological bases. On the other hand, demonstrating some molecular/biochemical or cellular effect, using surrogate systems for the human being, does not necessarily imply a corresponding health effect. Given the general acceptance of an extrapolated LNT model, our current understanding of carcinogenesis cries out for a resolution of a real problem. How can a low-level acute, or even a chronic, exposure of ionizing radiation bring about all the different mechanisms (mutagenic, cytotoxic, and epigenetic) and genotypic/phenotypic changes needed to convert normal cells to an invasive, malignant cell, given all the protective, repair, and suppressive systems known to exist in the human body? Until recently, the prevailing paradigm that ionizing radiation brings about cancer primarily by DNA damage and its conversion to gene and chromosomal mutations, drove our interpretation of radiation carcinogenesis. Today, our knowledge includes the facts both that epigenetic events play a major role in carcinogenesis and that low-dose radiation can also induce epigenetic events in and between cells in tissues. This challenges any simple extrapolation of the LNT model. Although a recent delineation of "hallmarks" of the cancer process has helped to focus on how ionizing radiation might contribute to the induction of cancers, several other hallmarks, previously ignored--namely, the stem cells in tissues as targets for carcinogenesis and the role of cell-cell communication processes in modulating the radiation effects on the target cell--must be considered, particularly for the adaptive response, bystander effects, and genomic instability phenomena.
Read full abstract