Pulmonary surfactant protein-A (SP-A) is expressed by lung alveolar and bronchiolar epithelial cells and plays a critical role in innate immunity of the lung. Exposure of the lung to various environmental insults alters SP-A homeostasis. To investigate the cellular mechanisms involved in these alterations, we added the FLAG octapeptide (DYKDDDDK) to the carboxy-terminus (SP-A/C-FLAG) or near the amino-terminus (SP-A/N-FLAG) of mouse SP-A (WT-SP-A) to tag specific pools of protein. We hypothesized that addition of FLAG would have negligible effects on SP-A expression, oligomerization and secretion. Analysis of Chinese hamster ovary cells expressing these proteins indicated that tagged SP-A mRNA could be distinguished from WT-SP-A by northern analysis and RT-PCR using sequence-specific oligonucleotides. Tagged SP-A protein could be differentiated from WT-SP-A by western analysis using antibodies specific for the FLAG epitope. Subcellular fractionation and immunocytochemistry indicated the majority of each protein was present in punctuate (presumably endocytic) vesicles, and all forms of SP-A protein were secreted. These results suggest that a FLAG epitope added to the carboxy-terminus or inserted into the amino-terminus of the mature SP-A protein has little effect on its expression and cellular processing. However, disruptions of the amino-terminal end of SP-A prevents proper oligomerization, suggesting that this region of mature SP-A is critical in proper oligomeric assembly and is not useful for studies intended to define mechanisms underlying SP-A homeostasis.