Abstract T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a co-inhibitory molecule containing an immunoreceptor tyrosine-based inhibition motif (ITIM) within its cytoplasmic tail, and is highly expressed on regulatory T cells and activated CD4+ T, CD8+ T, and NK cells. TIGIT competes with CD226, which contains an immunoreceptor tyrosine-based activation motif (ITAM) within its cytoplasmic tail for ligands poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2), with higher affinity to PVR. The ligands are expressed on the surface of antigen presenting cells and at high levels on most tumors. Therefore, when TIGIT is present, the ligands preferentially engage TIGIT rather than CD226, leading to cell suppression. We have generated antibodies against TIGIT that blocks ligand binding and inhibits TIGIT signaling. The clinical candidate, OMP-313M32 binds human TIGIT but not rodent and non-human primate TIGIT. Therefore, a surrogate antibody was generated for pre-clinical assessments in mice. Antibody 313R12 is an anti-mouse TIGIT antibody that can block mouse PVR ligand binding and inhibit TIGIT signaling in a manner similar to the clinical candidate OMP-313M32. 313R12 inhibited the growth of syngeneic colon and kidney tumors in immune competent mice. In some cases, anti-TIGIT antibody 313R12 caused complete tumor regression and a potent anti-tumor immune memory response as demonstrated by the lack of tumor growth upon re-challenge of mice that remained tumor-free after prior anti-TIGIT treatment. Mechanistically, anti-TIGIT antibody 313R12 was shown to induce a Th1 response and increase cytotoxic T lymphocyte (CTL) activity. By in vivo depletion of T cell populations, we have shown that CD8 T cell depletion completely abrogated the anti-TIGIT therapeutic effect, whereas CD4 T cell depletion led to partial reversal of efficacy of anti-TIGIT. Therefore, both CD4+ and CD8+ T cells are critical for anti-TIGIT-mediated immune responses. Using mice reconstituted with human hematopoietic stem cells, we also demonstrated that the clinical candidate OMP-313M32 inhibits patient-derived melanoma tumor growth. Taken together, these data demonstrate that anti-TIGIT therapy suppresses tumor growth and generates long-term immunological memory against multiple tumors. Citation Format: Angie Inkyung Park, Minu Srivastava, Erin Mayes, Hyun-Bae Jie, Rui Yun, Christopher Murriel, Ming-hong Xie, Andrew Lam, May Ji, Fumiko Axelrod, Jorge Monteon, John Lewicki, Tim Hoey, Austin Gurney. Antibody against TIGIT (T cell immunoreceptor with Ig and ITIM domains) induces anti-tumor immune response and generates long-term immune memory [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2003. doi:10.1158/1538-7445.AM2017-2003
Read full abstract