The aim of the present investigation is to study the effects of magnetic field, relaxation times, and rotation on the propagation of surface waves with imperfect boundary. The propagation between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half-space with rotation in the context of Green-Lindsay (GL) model is studied. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velocity and attenuation coefficient are obtained for stiffness, and then deduced for normal stiffness, tangential stiffness and welded contact. The amplitudes of displacements, temperature, and concentration are computed analytically at the free plane boundary. Some special cases are illustrated and compared with previous results obtained by other authors. The effects of rotation, magnetic field, and relaxation times on the speed, attenuation coefficient, and the amplitudes of displacements, temperature, and concentration are displayed graphically.