With current polishing methods, it is hard to guarantee roughness uniformity between the edge and inner regions of the surface. Hence, this paper develops a sub-aperture polishing method based on chemical mechanical action to remove turning periodic marks and improve surface roughness uniformity. A compliant polishing pad with a rigid tool holder is proposed to ensure that the pressure in the contact area remains constant when the polishing tool moves out the edge of the workpiece. The optimal process parameters were investigated in the full aperture polishing experiment. Numerical simulation was implemented to analyze the relationship between the overhang ratio and removal uniformity and optimize the polishing trajectory parameters. The polishing experiments with aluminum alloy mirrors reveal that the impurities inside the aluminum alloy restrict the further improvement of surface roughness. The average surface roughness is improved from 8.82 nm to 1.71 nm, and the peak and valley roughness value is reduced from 2.51 nm to 0.71 nm, which indicates the proposed sub-aperture polishing method can improve the surface roughness uniformity.
Read full abstract