Abstract

As the market for minimally invasive procedures developed rapidly, there was an increase in the demand for high-precision, high-performance catheter fabrication technology. Sheath and dilator tubes are essential intervention devices for procedures, in which catheters are used and require precise dimensional accuracy, and uniform roundness and surface roughness. Polyethylene is used in sheath and dilator limitation for processability, which causes low melt flow index and side effects. Therefore, in the extrusion process using polyethylene, it is important to study the manufacturing of tubes with improved roundness and surface roughness. In this study, we proposed a calibrator for precise production with an aim to manufacture 5Fr micro-puncture tubes, and studied the changes in the roundness and surface roughness of tubes by changing the cooling water temperature and water disk thickness. As a result, it was found that the cooling water temperature and wafer disk thickness had an effect on the roundness and surface roughness, and the roundness had an effect on the formation of the wall thickness. Therefore, these experimental results were used as a study for the production of improved Sheath and Dilator tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call