BackgroundAchieving a stable bond with zirconia requires mechanical and chemical bonding methods. Information regarding the optimal treatment method for zirconia with varying yttrium content is scarce. This study evaluated the effect of different surface treatments on the shear bond strength of zirconia with various yttria contents.Materials and methodsA total of 168 disc-shaped zirconia specimens were classified into 12 groups based on the surface treatment method, including airborne-particle abrasion (APA), selective infiltration etching (SIE), hot etching (HE), and control group with no treatment; and yttria contents including Zolid Zi (4.5–5.6 wt% yttrium), Zolid HT White (6.7–7.2 wt% yttrium), and Ceramill Zolid FX (9.15–9.55 wt% yttrium). The surface roughness (Ra and Rz) of the specimens and the shear bond strength was measured (α = 0.05).ResultsThe results indicated that the mean bond strength of all specimens was higher after different surface treatments compared to the control group, of which the APA method resulted in higher bonding strength in all kinds of zirconia than other methods (P < 0.05). In all types of zirconia, a significant difference was observed in surface roughness (Ra and Rz) resulting from various surface treatment methods (P < 0.001). Interaction of surface treatment methods and zirconia type significantly affected shear bond strength and surface roughness (P < 0.05).ConclusionAPA significantly enhanced shear bond strength and surface roughness across all zirconia types and yttria contents. The SIE and HE methods also showed promising results. Zolid Zi showed superior bond strength, whereas Zolid FX demonstrated reduced bond strength.
Read full abstract