Electronic structure of the Ba/3C–SiC(111) interface has been detailed studied in situ in an ultrahigh vacuum using synchrotron radiation photoemission spectroscopy with photon energies in the range of 100–450eV. The 3C–SiC(111) samples were grown by a new method of epitaxy of low-defect unstressed nanoscaled silicon carbide films on silicon substrates. Valence band photoemission and both the Si 2p, C 1s core level spectra have been investigated as a function of Ba submonolayer coverage. Under Ba adsorption two induced surface bands are found at binding energies of 2eV and 6eV. It is obtained that Ba/3C–SiC(111) interface can be characterized as metallic-like. Modification of both the Si 2p and C 1s surface-related components were ascertained and shown to be provided by redistribution effect of electron density between Ba adatoms and both the Si surface and C interface atoms.
Read full abstract