Inertial Measurement Units are widely used in various applications and, hardware-wise, they primarily consist of a tri-axial accelerometer and a tri-axial gyroscope. For low-end commercial employments, the low cost of the device is crucial: this makes MEMS-based sensors a popular choice in this context. However, MEMS-based transducers are prone to significant, non-uniform and environmental-condition-dependent systematic errors, that require frequent re-calibration to be eliminated. To this end, identification methods that can be performed in-field by non-expert users, without the need for high-precision or costly equipment, are of particular interest. In this paper, we propose an in-field identification procedure based on the Total Least Squares method for both tri-axial accelerometers and gyroscopes. The proposed identification model is linear and requires no prior knowledge of the parameters to be identified. It enables accelerometer calibration without the need for specific reference surface orientation relative to Earth’s gravity and allows gyroscope calibration to be performed independently of accelerometer data, without requiring the sensor’s sensitive axes to be aligned with the rotation axes during calibration. Experiments conducted on NXP sensors FXOS8700CQ and FXAS21002 demonstrated that using parameters identified by our method reduced cross-validation standard deviations by about two orders of magnitude compared to those obtained using manufacturer-provided parameters. This result indicates that our method enables the effective calibration of IMU sensor parameters, relying only on simple 3D-printed equipment and significantly improving IMU performance at minimal cost.