This work describes a reciprocal relationship between cell density and levels of insulin-like growth factor receptors (IGFR) in MCF7 human breast cancer cells, which adds a new dimension to the mechanism of cross-talk between estrogen and insulin-like growth factors in the regulation of breast cancer cell growth. The reduced binding of both (125)I-IGF1 and alphaIR3 anti-IGFR antibody to whole cells showed that IGFR are lost from the surface of MCF7 cells as cell density increases, and this occurred irrespective of the presence or absence of estradiol. Western immunoblotting further confirmed loss of type I IGFR from MCF7 cells with increasing cell density. Long term estrogen deprivation was found to increase the levels of IGFR at all cell densities, such that after 96 weeks of estrogen deprivation, IGFR levels had become similar at the highest cell density in the absence of estradiol to the IGFR levels at the lowest cell density in the estrogen-maintained cells, and the levels of IGFR could be increased still further by estradiol. This overexpression of IGFR in the estrogen-deprived cells correlated with a reversal of response to exogenously added ligand, in that concentrations of insulin, IGFI, and IGFII that had stimulated growth of the estrogen-maintained cells became growth inhibitory to the estrogen-deprived cells. Blockade of the IGFIR with the alphaIR3 anti-IGFR antibody could partially inhibit the growth of the estrogen-deprived cells, suggesting that up-regulation of IGFR in these cells may contribute to the mechanism of adaptation to growth in steroid-deprived conditions which results in progression to estrogen independence of cell growth.
Read full abstract