In formulating this summary of our simon-pure knowledge of the structure/function relationships in the thymus, we decided that the time may have come to introduce a suitable dose of cynicism to balance the sometimes hopeless optimism of the past. Are the non-lymphoid cells of the thymus necessary for thymic function? Probably, but not to the extent or uniqueness that some authors including ourselves have previously claimed; T cells can probably differentiate in other tissues but may acquire their preference for MHC class II in the thymus. Mouse thymic lymphoid cell traffic and surface phenotype has recently been summarized pictorally by Scollay and Shortman [95]. Briefly stated, within the thymus, cells are hatched, matched and then dispatched. Minimally, the non-lymphoid cells act either as scenically varied obstacles along the way, nurseries for newborn T cells, or as tombstones for life's disenfranchized, effete and autoaggressive thymocytes. Hassall's corpuscles are morphological structures unique to the thymus, which are most useful to medical students for identification of this tissue. Their function remains one of life's great mysteries. Morphologically, they are suitable companions to the more recently described strange multicellular complexes of lymphocytes and epithelial cells which might be functionally important. The thymus of the much studied inbred, environmentally mollycoddled, laboratory mouse has been often and majestically described. It is probably typical for that of man and most mammals. It may, however, be unrepresentative of the thymus of stressed and parasitized wild animals. Diseases of the thymus generally can be categorized as not having enough thymus, having a neoplastic thymus or having a thymus which does not work properly. The bottom line in our knowledge of thymic nonlymphoid cells is that if you are born without them, you get sick and die; unless, of course, you are a nude mouse in Omaha, in which case you just freeze to death.