Coexisting of microplastics (MPs) and residual herbicides has received substantial attention due to concerns about the pollutant vector effect. Here, the widely used amide herbicides were examined for their sorption behaviors on the priority biodegradable and nondegradable MPs identified in intensive agriculture. The fitting results indicated that the interactions between napropamide (Nap)/acetochlor (Ace) and the MPs, i.e., poly (butyleneadipate-co-terephthalate) microplastic (PBATM), polyethylene microplastic (PEM), and polypropylene microplastic (PPM), may be dominated by hydrophobic absorptive partitioning on the heterogeneous surfaces. Additionally, chemisorption cannot be ignored for the sorption of Nap/Ace on the biodegradable MPs. The sorption capacities of Nap/Ace on the MPs followed the order of PBATM > PEM > PPM. The differences in sorption capacity which varied by the MP colors were not significant. The hydrophobicity of the herbicides and the MPs, the rubber regions, surface O-functional groups, benzene ring structures and large specific surface area of the biodegradable MPs played key roles in the better performance in sorbing amide herbicides. Moreover, MPs, especially biodegradable MPs, might lead to a higher vector effect for residual amide herbicides than some other common environmental media. This study may provide baseline insights into the great potential of biodegradable MPs to serve as carriers of residual amide herbicides in intensive agrosystems.