Super fine pulverized coal combustion is a new pulverized coal combustion technology which has better stability, higher combustion efficiency and lower NO x and SO 2 emission than that using conventional particle sizes. In this paper we applied fractal analysis based on power spectral density (PSD) and slit island method (SIM), three-dimensional (3D) surface roughness measurement and surface-topography observations from AFM to form a proper investigative tool which may give a relatively full picture of surface morphology of super fine pulverized coal particles for the first time. The final results indicate that both fractal dimensions calculated by SIM and PSD and roughness of coal particle size increase with the increase of the coal particle size. Besides, the grey relational analysis was used to study the degree of relative importance of the influential factors about the microroughness of coal particle surfaces. The results show that the influence of the coal particle size is the greatest compared with the coal qualities and fractal dimensions. This work provides some reference for a relatively full picture of surface morphology of super fine pulverized coal particles. The findings from this work will be helpful to form the basis and provide guidance for further studies on the chemical and combustion characteristics of super fine pulverized coal particles.
Read full abstract