The current study provides a comprehensive numerical investigation of flow and heat transfer of water-based Cu nanoparticles over a convergent/divergent channel. In order to control the random motion of nanoparticles, Darcy-Forchheimer, particle shape effect and viscous dissipation are also incorporated for the present mechanism. The resulting system of nonlinear equations is solved numerically by using the RKF-45 method. Expressions for the velocity and temperature profile are derived and plotted under the assumption of a flow parameter. The influence of various parameters on surface drag force and heat transfer rates have been discussed with the help of tables and plots.
Read full abstract