The aim of the study was to evaluate the antibacterial activity and surface hardness of a light-activated microhybrid composite resin modified with green silver nanoparticles (AgNPs). AgNPs were synthesized using an Equisetum sylvaticum extract and characterized through different methods such as UV-Vis, EDX, and FTIR. The obtained AgNPs were mixed with a microhybrid composite resin (Herculite XRV, Kerr Corp., Orange, CA, USA) in different concentrations: 0% (group A-control); 0.5% (group B); 1% (group C); and 1.5% (group D). A total of 120 composite resin disk-shaped samples were obtained and divided into 4 groups (n = 30) according to AgNP concentration. Each group was then divided into 2 subgroups: subgroup 1-samples were not soaked in 0.01 M NaOH solution; and subgroup 2-samples were soaked in 0.01 M NaOH solution. The antibacterial activity against Streptococcus mutans was determined using a direct contact test. A digital electronic hardness tester was used to determine the composite resin's Vickers surface hardness (VH). Statistical analysis was performed using the Mann-Whitney U and Kruskal-Wallis nonparametric tests with a confidence level of 95%. Groups C and D showed higher antibacterial activity against S. mutans when compared to the control group (p < 0.05). No significant differences were recorded between VH values (p > 0.05). The use of AgNPs synthesized from Equisetum sylvaticum as a composite resin filler in 1% wt. and 1.5% wt. reduced the activity of Streptococcus mutans. Soaking of the experimental composite resin decreased the antibacterial efficacy. The loading of a microhybrid composite resin with AgNPs in concentrations of 0.5% wt., 1% wt., and 1.5% wt. did not influence the surface hardness.
Read full abstract