Introduction The present study evaluates the sticking propensity of Uncoated steel, and chromium nitride (CrN), zirconium nitride (ZrN), titanium nitride (TiN) and Ultracoat punch coatings during the tableting process of microcrystalline cellulose (MCC) conducted on a Manesty® F3 single station tableting press. Methods Surface properties including surface roughness, surface free energy (SFE) and its components, the atomic percentage of surface polar functional groups and oxides measured with X-ray photoelectron spectroscopy were used to characterize the surface propensity to sticking. Results After five hours of tablet pressing, MCC powder particles were found to adhere to the TiN coated and the uncoated steel punches. Surface analysis show that surface roughness of all the tested punches was similar. The Lewis base SFE component (LB-comp) was found to govern the acid-base interactions of the tested surfaces, and its value was higher for punch surfaces affected by sticking. The surfaces exhibiting higher LB-comp are more prone to strong acid-base interactions with water molecules that evaporate from the powder bed during compression. Therefore, these surfaces adsorbed water and allow sticking through capillary adhesion force. Conclusion The total atomic percentage of the surface polar functional groups (PFG) and oxides was also high for the surfaces that stick to MCC during tableting, suggesting that hydrophilic molecules on the punch surface favor sticking.
Read full abstract