In food industry, protein isolates are often used to help in the formation and stabilisation of food foams. Subsequently there is great interest in (1) understanding the effect of processing parameters on the functional properties of the isolate, and (2) methods and techniques that can help to predict the foam properties. This article describes the foaming properties of proteins that were modified in the Maillard reaction. From these relatively simple experiments results were obtained that indicate that for certain protein solutions the foam properties can vary significantly, while the interfacial properties are constant. Commercial protein isolates originate from only a few sources, mainly egg white and whey, and sometimes plant proteins (e.g. soy). Despite these limited sources a large variety of isolates with a wide range of properties is produced. One source of variation is the isolation procedure, but at least equally important are the conditions used before, during and after drying the protein solution to form the dry powder. From the literature it was found that one of the major changes to the protein during processing of the isolates is the covalent coupling of sugars via the Maillard reaction. To study the effects of these reactions, a model system was produced that consists of proteins that were glycated to different degrees using Maillard reaction. For each sample, interfacial properties (e.g. surface pressure, dilatational modulus) were determined, and foam experiments were performed. The results show that at constant concentration of both the protein (0.5 g/L) and sugar (0.7 g/L), the foam-ability and stability could be significantly improved (e.g. non-modified lysozyme does not foam, the highest modification is easily foamed and the foam has a half-life time of 200 s). The results confirm other observations that Maillard reactions improve foaming properties. Moreover, strong indications were found that to predict foam stability we need more than the traditional parameters (i.e. (dynamic) surface pressure, interfacial reology, and disjoining pressure).
Read full abstract