The complicated dynamic processes occurring when fluvial waters mix with marine waters control the nature and the fluxes of materials exported by rivers to the sea. Understanding these processes is of primary importance in evaluating budgets. In wide-open estuarine situations these processes take place under the influence of an intense turbulence induced by tides. Conversely, the Rhone waters spread into the Mediterranean Sea in the form of an easily distinguishable buoyant plume often extending far offshore from the mouth of the river. The aim of this study is to describe the dynamic and hydrological fields on the basis of eulerian VHF radar mapping of surface currents coupled with lagrangian in situ physical or geochemical measurements. This paper focuses mainly on physical processes. Data analysis provides an insight into the typical scales of variability of the phenomena, either vertically or horizontally. It is shown that morphological fluctuations can occur (mainly in orientation and offshore extent) according to wind and outflow forcing conditions, and that the vertical structure variations can range from an almost unaltered two-layer distribution to an evolving and deepening mixed layer situation, or even to a more complex superimposed multi-layered structure. The simultaneous examination of radar maps and lagrangian drifter tracking allows the main dynamic tendencies of the Rhone plume to be sketched out.
Read full abstract