AbstractUpper-ocean turbulence is central to the exchanges of heat, momentum, and gasses across the air/sea interface, and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed-layer depths and sea surface temperature. In part, progress has been limited due to the difficulty of measuring turbulence from fixed moorings which can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring Turbulent Kinetic Energy (TKE) dissipation rates, ϵ, from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-ocean Regional Study (SPURS) to collect two year-long data sets. We find the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate two-week missions for (10−8) ≤ ϵ ≤ (10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1-10 km. We also find that dissipation estimates from two different moorings at 12.5 m, and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.