Microplastics in the environments can undergo various aging processes that alter their physicochemical properties and consequently their affinities for environmental contaminants. Here, we compare the effects of sulfide-induced aging (a common process in anoxic environments) and UV-induced aging on contaminant binding of polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) microplastics derived from commercial plastic products. The two aging processes differentially affect adsorption of pyrene (a model nonionic, nonpolar organic) and ciprofloxacin (CIP, a zwitterion under the conditions tested) by modulating the hydrophobicity, surface charges and polarity of the microplastics to different extents. The effects of the two treatments on Cd(II) adsorption correlate well with their modulation on ζ potential and surface (O + S)/C ratio of the microplastics. For all three microplastics sulfide treatment results in stronger adsorption of Cr(VI) and its subsequent conversion to Cr(III) than does UV treatment, as the thiol groups formed during sulfide treatment strongly regulate the complexation and reduction of Cr(VI). Notably, both sulfide and UV treatments result in the flattening of the PET microplastics, significantly enhancing the adsorption of all four contaminants, by increasing surface area for adsorption. The findings of this study further underline the importance of understanding environmental aging/weathering processes of microplastics, particularly, those readily occur in anoxic environments but were previously not well studied.
Read full abstract