Bothrops snake venoms contain biologically active components, including L-amino acid oxidases (LAAO) that induce significant leukocyte accumulation at inflammatory sites characterized by early neutrophil infiltration. As it remains unclear how snake venoms modulate neutrophil activation and chemokine production, here we examined whether Bothrops moojeni crude venom (BmV) and its LAAO (BmooLAAO-I) affect expression of the surface activation markers CD11b and CD66b, production of the chemokines CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, CXCL9/MIG, and CXCL-10/IP-10, and activation of oxidative burst in human neutrophils. Cell viability, expression of activation markers, and chemokine production were assessed by flow cytometry, while the oxidative burst response was measured by chemiluminescence. BmV at 50 and 75 µg/mL reduced CXCL8/IL-8 (p < 0.001 and p < 0.01, respectively) and CCL2/MCP-1 production (p < 0.05), while BmooLAAO-I at the same concentrations reduced only CCL2/MCP-1 production (p < 0.01). These effects were accompanied by CD11b upregulation (p < 0.05 for 50 and 75 µg/mL BmV; p < 0.01 for 50 and 75 µg/mL BmooLAAO-I) and CD66b downregulation (p < 0.05 for 50 and 75 µg/mL BmV). Both BmV and BmooLAAO-I at concentrations ranging from 0.625 to 5 µg/mL suppressed the oxidative burst of neutrophils stimulated with phorbol 12-myristate 13-acetate, while BmooLAAO-I at 2.5 and 5 µg/mL also suppressed the neutrophil response stimulated with opsonized zymosan. Considering that neutrophils participate in the pathogenesis of autoimmune and inflammatory diseases, the findings reported herein indicate that BmV and BmooLAAO-I are potential immunomodulating agents.
Read full abstract