Recent research has revealed that a system of coupled units with a certain degree of parameter diversity can generate an enhanced response to a subthreshold signal compared to that without diversity, exhibiting a diversity-induced resonance. We here show that diversity-induced resonance can also respond to a suprathreshold signal in a system of globally coupled bistable oscillators or excitable neurons, when the signal amplitude is in an optimal range close to the threshold amplitude. We find that such diversity-induced resonance for optimally suprathreshold signals is sensitive to the signal period for the system of coupled excitable neurons, but not for the coupled bistable oscillators. Moreover, we show that the resonance phenomenon is robust to the system size. Furthermore, we find that intermediate degrees of parameter diversity and coupling strength jointly modulate either the waveform or the period of collective activity of the system, giving rise to the resonance for optimally suprathreshold signals. Finally, with low-dimensional reduced models, we explain the underlying mechanism of the observed resonance. Our results extend the scope of the diversity-induced resonance effect.
Read full abstract