Abstract

BackgroundNoise exposure can lead to hearing loss and multiple system dysfunctions. As various forms of noise exist in our living environments, and our auditory organs are very sensitive to acoustic stimuli, it is a challenge to protect our hearing system in certain noisy environments.Presentation of the hypothesisHerein, we propose that our hearing organ could serve as a noise eliminator for high intensity noise and enhance acoustic signal processing abilities by increasing the signal-noise ratio. For suprathreshold signals, the hearing system is capable of regulating the middle ear muscles and other structures to actively suppress the sound level to a safe range.Testing the hypothesisTo test our hypothesis, both mathematic model analyses and animal model studies are needed. Based on a digital 3D reconstructed model, every structure in the auditory system can be analyzed and tested for its contribution to the process of noise reduction. Products manufactured by this bionic method could be used and verified in animal models and volunteers.ImplicationsBy mimicking the noise-reduction effect of the sophisticated structures in the hearing system, we may be able to provide a model that establishes a new active-sound-suppression mode. This innovative method may overcome the limited capabilities of current noise protection options and become a promising possibility for noise prevention.

Highlights

  • Noise exposure can lead to hearing loss and multiple system dysfunctions

  • Based on a digital 3D reconstructed model, every structure in the auditory system can be analyzed and tested for its contribution to the process of noise reduction. Products manufactured by this bionic method could be used and verified in animal models and volunteers

  • The novelty of our hypothesis is the use of a bionic method to replicate the relevant hearing structures and their noise-reduction functions to achieve better efficiency in noise protection

Read more

Summary

Introduction

Noise exposure can lead to hearing loss and multiple system dysfunctions. As various forms of noise exist in our living environments, and our auditory organs are very sensitive to acoustic stimuli, it is a challenge to protect our hearing system in certain noisy environments.Presentation of the hypothesis: we propose that our hearing organ could serve as a noise eliminator for high intensity noise and enhance acoustic signal processing abilities by increasing the signal-noise ratio. Based on a digital 3D reconstructed model, every structure in the auditory system can be analyzed and tested for its contribution to the process of noise reduction. Implications: By mimicking the noise-reduction effect of the sophisticated structures in the hearing system, we may be able to provide a model that establishes a new active-sound-suppression mode.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.