The adaptogenic effect of the chemical analogues of alkylhydroxybenzenes (AHBs), bacterial extracellular autoregulators (the individual compound C7-AHB and its technical preparation Sidovit), was demonstrated for two pseudomonad species, Pseudomonas aeruginosa and P. fluorescens. The protective effect of AHBs resulted in increased growth rate and biomass accumulation in bacteria grown under suboptimal conditions within the species tolerance range. The adaptogenic effect of AHBs (10–50 μmg/l) was more pronounced under more unfavorable growth conditions. In the case of P. fluorescens, the individual compound C7-AHB increased the biomass yield by 30% under alkaline conditions (pH 9.5), when the growth rate decreased by 80–90% compared to the optimum (pH 5.5–7.5). The Sidovit preparation, containing a mixture of natural AHBs with C7-AHB as the main component, increased the growth rate of P. aeruginosa by 40–60% at nonoptimal temperatures (45 and 10°C) or under enhanced salinity (1% NaCl). The action of AHBs as regulators of the rpoS and SOS response stress regulons was demonstrated to be among the mechanisms of their adaptogenic effect, as was demonstrated with the relevant reporter genes in the model strains E. coli C600 thi, thr, leuΔ(pro-lac) with the osmE-lacZ and umuD-lacZ hybrid operons, respectively. AHBs are technologically and economically acceptable as adaptogenic supplements for bacterial preparations used in soil bioremediation and oil spillage removal under conditions unfavorable for microbial growth, including increased salinity, extreme pH, and fluctuating sub- or supraoptimal temperatures.
Read full abstract