Sepsis is a systemic inflammatory response that may be induced by trauma, infection, surgery, and burns. With the aim of discovering novel treatment targets for sepsis, this current study was conducted to investigate the effect and potential mechanism by which microRNA-30a (miR-30a) controls sepsis-induced liver cell proliferation and apoptosis. Rat models of sepsis were established by applying the cecal ligation and puncture (CLP) method to simulate sepsis models. The binding site between miR-30a and suppressor of cytokine signaling protein 1 (SOCS-1) was determined by dual luciferase reporter gene assay. The gain-of-and-loss-of-function experiments were applied to analyze the effects of miR-30a and SOCS-1 on liver cell proliferation and apoptosis of the established sepsis rat models. The expression of miR-30a, SOCS-1, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), Bcl-2 associated X protein (Bax), B cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), and high-mobility group box 1 (HMGB1), and the extent of JAK2 and STAT3 phosphorylation were all determined. Sepsis led to an elevation of miR-30a and also a decline of SOCS-1 in the liver cells. SOCS-1 was negatively regulated by miR-30a. Upregulated miR-30a and downregulated SOCS-1 increased the expression of JAK2, STAT3, Bax, TLR4, and HMGB1 as well as the extent of JAK2 and STAT3 phosphorylation whereas impeding the expression of SOCS-1 and Bcl-2. More important, either miR-30a elevation or SOCS-1 silencing suppressed liver cell proliferation and also promoted apoptosis. On the contrary, the inhibition of miR-30a exhibited the opposite effects. Altogether, we come to the conclusion that miR-30a inhibited the liver cell proliferation and promoted cell apoptosis by targeting and negatively regulating SOCS-1 via the JAK/STAT signaling pathway in rats with sepsis.