Quantitative analysis of neurite growth and morphology is essential for understanding the determinants of neural development and regeneration, however, it is complicated by the labor-intensive process of measuring diverse parameters of neurite outgrowth. Consequently, automated approaches have been developed to study neurite morphology in a high-throughput and comprehensive manner. These approaches include computer-automated algorithms known as 'convolutional neural networks' (CNNs)—powerful models capable of learning complex tasks without the biases of hand-crafted models. Nevertheless, their complexity often relegates them to functioning as 'black boxes.' Therefore, research in the field of explainable AI is imperative to comprehend the relationship between CNN image analysis output and predefined morphological parameters of neurite growth in order to assess the applicability of these machine learning approaches. In this study, drawing inspiration from the field of automated feature selection, we investigate the correlation between quantified metrics of neurite morphology and the image analysis results from NeuriteNet—a CNN developed to analyze neurite growth. NeuriteNet accurately distinguishes images of neurite growth based on different treatment groups within two separate experimental systems. These systems differentiate between neurons cultured on different substrate conditions and neurons subjected to drug treatment inhibiting neurite outgrowth. By examining the model's function and patterns of activation underlying its classification decisions, we discover that NeuriteNet focuses on aspects of neuron morphology that represent quantifiable metrics distinguishing these groups. Additionally, it incorporates factors that are not encompassed by neuron morphology tracing analyses. NeuriteNet presents a novel tool ideally suited for screening morphological differences in heterogeneous neuron groups while also providing impetus for targeted follow-up studies.
Read full abstract