β-defensin 2 (BD2) is a small cationic peptide that exerts a critical role in host defense against bacterial infections. Here, we aimed to investigate the role of BD2 in protecting against acute urinary tract infection (AUTI) caused by Escherichia coli (UPEC). Here, LPS-induced human urinary bladder epithelial cell (HCV-29) model and UPEC-induced mice model were used for assessing AUTI. Visceral organ lesions of mice following treatment was assessed by HE staining. Cell viability was determined by CCK-8 assay. Permeability in HCV-29 cells was analyzed in Transwell assay. Expression of inflammatory factors (IL-1β, IL-6, and TNF-α) was measured by ELISA assay. The levels of BD2, β-catenin and tight-junction proteins (ZO-1, Occludin, and Claudin-1) were detected by RT-qPCR, western blotting, immunofluorescence or immunohistochemistry. Our results showed that BD2 was lowly expressed and β-catenin showed the reverse trend in response to bacterial infection in vitro and in vivo. BD2 overexpression alleviated the decreased cell viability, increased cell permeability, upregulation of inflammatory factors, downregulation of tight-junction protein and high β-catenin expression in LPS-induced HCV-29 cells, which may contribute to the negative regulation of β-catenin expression. Furthermore, BD2 overexpression attenuated the bacterial infection of tissues, high levels of inflammatory factors and β-catenin, and low levels of tight-junction proteins in mice stimulated with UPEC. This study showed that BD2 played a crucial role in protecting against AUTI caused by gram-negative bacteria through suppressing β-catenin expression. Targeting BD2 may provide a potential therapeutic approach for the prevention and treatment of AUTI.
Read full abstract