Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.