Biofunctional surfaces require advanced design and preparation to match the (bio)recognition ability of biological systems [1]. This requires combined topographic, chemical and visco-elastic surface patterns to match proteins at the nm scale and cells at the micrometer scale. One example of biochemical functionalization, presented here, and which is of both fundamental and application interest, is supported biomimectic (cell)membranes. Specifically we describe preparation and applications of supported phospholipid membranes, which can be made on certain surfaces from unilamellar, 25–200 nm vesicles. On SiO2 at normal pH and with neutral lipids, the vesicles first adsorb intact, and then undergo a phase transformation to a supported bilayer. We have studied the coverage-, vesicle size-, and T-dependence of this process [2], using QCM-D [3], AFM, and SPR. When SiO2 is replaced by TiO2, vesicles adsorb intact. A surface pre-covered with intact vesicles, can be AFM patterned into areas with bilayer, vesicles, and empty surface patches [4]. The results depend critically on AFM tip interaction with vesicle and bilayer, which has been modeled by Monte Carlo simulations [5]. These biomembranes are inert towards protein adsorption [6] and cell attachement [7], which opens up for various applications. Addition of functional molecules, allows sensor functions [8]. Another application is functionalized membranes for surface-specific (stem) cell interactions [9].
Read full abstract